Formation, evolution and scaling of plasma synthetic jets

Author:

Zong HaohuaORCID,Kotsonis Marios

Abstract

Plasma synthetic jet actuators (PSJAs), capable of producing high-velocity pulsed jets at high frequency, are well suited for high-Reynolds-number subsonic and supersonic flow control. The effects of energy deposition and actuation frequency on the formation and evolution characteristics of plasma synthetic jets (PSJs) are investigated in detail by high-speed phase-locked particle imaging velocimetry (PIV). Increasing jet intensity with energy deposition is mainly contributed by the increasing peak jet velocity ($U_{p}$), while decreasing jet intensity with actuation frequency is attributed to both the reduced cavity density (primary factor) and the shortened jet duration (secondary factor). The total energy efficiency of the considered PSJA ($O(0.01\,\%)$) reduces monotonically with increasing frequency, while the time-averaged thrust produced by the PSJA is positively proportional to both the deposition energy and the frequency. A simplified theoretical model is derived and reveals a scaling power law between the peak jet velocity and the non-dimensional deposition energy (exponent$1/3$). The propagation velocity of the vortex ring attached at the jet front shows a non-monotonic behaviour of initial sharp increase and subsequent mild decay. The peak values for both the propagation velocity and the circulation of the front vortex ring are reached approximately two exit diameters away from the exit. Finally, analysis of the time-averaged flow fields of the issuing PSJ indicates that the axial decay rate of the centreline velocity is proportional to the actuation frequency whereas it is invariant with the energy deposition. The jet spreading rate of the PSJ is found to be higher than steady jets but lower than piezoelectric synthetic jets. Similarly, the entrainment coefficients of the PSJ are found to be twice as high as the values for comparable steady jets.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3