When is high Reynolds number shear flow not turbulent?

Author:

Balbus Steven A.

Abstract

Rotating flow in which the angular velocity decreases outward while the angular momentum increases is known as ‘quasi-Keplerian’. Despite the general tendency of shear flow to break down into turbulence, this type of flow seems to maintain stability at very large Reynolds number, even when nonlinearly perturbed, a behaviour that strongly influences our understanding of astrophysical accretion discs. Investigating these flows in the laboratory is difficult because secondary Ekman flows, caused by the retaining Couette cylinders, can become turbulent on their own. A recent high Reynolds number numerical study by Lopez & Avila (J. Fluid Mech., vol. 817, 2017, pp. 21–34) reconciles apparently discrepant laboratory experiments by confirming that this secondary flow recedes toward the axial boundaries of the container as the Reynolds number is increased, a result that enhances our understanding of nonlinear quasi-Keplerian flow stability.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference9 articles.

1. Angular Momentum Transport in Turbulent Flow between Independently Rotating Cylinders

2. Black holes in binary systems. Observational appearance;Shakura;Astron. Astrophys.,1973

3. Boundary-layer turbulence in experiments on quasi-Keplerian flows

4. Stability and Angular-Momentum Transport of Fluid Flows between Corotating Cylinders

5. Reynolds number scaling of the influence of boundary layers on the global behaviour of quasi-Keplerian flows;Edlund;Phys. Rev. E,2015

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3