The impact of static and dynamic roughness elements on flow separation

Author:

Servini P.ORCID,Smith F. T.,Rothmayer A. P.

Abstract

The use of static or dynamic roughness elements has been shown in the past to delay the separation of a laminar boundary layer from a solid surface. Here, we examine analytically the effect of such elements on the local and breakaway separation points, corresponding respectively to the position of zero skin friction and presence of a singularity in the roughness region, for flow over a hump embedded within the boundary layer. Two types of roughness elements are studied: the first is small and placed near the point of vanishing skin friction; the second is larger and extends downstream. The forced flow solution is found as a sum of Fourier modes, reflecting the fixed frequency forcing of the dynamic roughness. Solutions for both the static and dynamic roughness show that the presence of the roughness element is able to move the separation points downstream, given an appropriate choice of roughness frequency, height, position and width. This choice is found to be qualitatively similar to that observed for leading-edge separation. Furthermore, for a negative static roughness a small region of separated flow forms at high roughness depth, although there is a critical depth above which boundary-layer breakaway moves suddenly upstream.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3