On compositional modelling

Author:

KEPPENS JEROEN,SHEN QIANG

Abstract

Many solutions to AI problems require the task to be represented in one of a multitude of rigorous mathematical formalisms. The construction of such mathematical models forms a difficult problem which is often left to the user of the problem-solver. This void between problem-solvers and their problems is studied by the eclectic field of automated modelling. Within this field, compositional modelling, a knowledge-based methodology for system-modelling, has established itself as a leading approach. In general, a compositional modeller organises knowledge in a structure of composable fragments that relate to particular system components or processes. Its embedded inference mechanism chooses the appropriate fragments with respect to a given problem, instantiates and assembles them into a consistent system model. Many different types of compositional modeller exist, however, with significant differences in their knowledge representation and approach to inference. This paper examines compositional modelling. It presents a general framework for building and analysing compositional modellers. Based on this framework, a number of influential compositional modellers are examined and compared. The paper also identifies the strengths and weaknesses of compositional modelling and discusses some typical applications.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Software

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Legal evidence and advanced computing techniques for combatting crime: an overview;Information & Communications Technology Law;2013-10

2. The Forensic Disciplines: Some Areas of Actual or Potential Application;Computer Applications for Handling Legal Evidence, Police Investigation and Case Argumentation;2011-10-24

3. A Credibilistic Approach to Assumption-Based Truth Maintenance;IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans;2011-01

4. A Framework for Intelligent Analysis of Intelligence Data;Studies in Computational Intelligence;2011

5. A Benchmark Diagnostic Model Generation System;IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans;2010-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3