Individual evolutionary learning with many agents

Author:

Arifovic Jasmina,Ledyard John

Abstract

AbstractIndividual Evolutionary Learning (IEL) is a learning model based on the evolution of a population of strategies of an individual agent. In prior work, IEL has been shown to be consistent with the behavior of human subjects in games with a small number of agents. In this paper, we examine the performance of IEL in games with many agents. We find IEL to be robust to this type of scaling. With the appropriate linear adjustment of the mechanism parameter, the convergence behavior of IEL in games induced by Groves–Ledyard mechanisms in quadratic environments is independent of the number of participants.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thirty-Five Years of Computational Economics;Understanding Complex Systems;2023

2. Adding Supply/Demand Imbalance-Sensitivity to Simple Automated Trader-Agents;Lecture Notes in Computer Science;2022

3. The special issue: agent-based computational economics—overview;The Knowledge Engineering Review;2012-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3