Knowledge level modelling: concepts and terminology

Author:

USCHOLD MIKE

Abstract

We address the problem of highly varied and inconsistent usage of terms by the knowledge technology community in the area of knowledge-level modelling. It is arguably difficult or impossible for any standard set of terms and definitions to be agreed on. However, de facto standard usage is already emerging within and across certain segments of the community. This is very difficult to see, however, especially for newcomers to the field. It is the goal of this paper to identify and reflect the most common usage of terms as currently found in the literature. To this end, we introduce and define the concept of a knowledge level model, comparing how the term is used today with Newell's original usage. We distinguish two major types of knowledge level model: ontologies and problem solving models. We describe what an ontology is, what they may be used for and how they are represented. We distinguish various kinds of ontologies and define a number of additional related concepts. We describe what is meant by a problem solving model, what they are used for, and attempt to clarify some terminological confusion that exists in the literature. We define what is meant by the term ‘problem’, and some common notions used to characterise and represent problems. We introduce and describe the ideas of tasks, problem solving methods and a variety of other important related concepts.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Software

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multi-Stage Method for Spatial Demands Prediction in Healthcare Buildings;Buildings;2024-08-01

2. Ontology-based knowledge representation for traditional martial arts;Digital Scholarship in the Humanities;2024-02-08

3. Towards Understanding and Analyzing Rationale in Commit Messages Using a Knowledge Graph Approach;2023 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C);2023-10-01

4. Process Defects Knowledge Modeling in Laser Powder Bed Fusion Additive Manufacturing: An Ontological Framework;Manufacturing Letters;2023-08

5. Automated Generation of MTP Skeletons Based on Ontologies;2023 IEEE 21st International Conference on Industrial Informatics (INDIN);2023-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3