A survey on metrics for the evaluation of user simulations

Author:

Pietquin Olivier,Hastie Helen

Abstract

AbstractUser simulation is an important research area in the field of spoken dialogue systems (SDSs) because collecting and annotating real human–machine interactions is often expensive and time-consuming. However, such data are generally required for designing, training and assessing dialogue systems. User simulations are especially needed when using machine learning methods for optimizing dialogue management strategies such as Reinforcement Learning, where the amount of data necessary for training is larger than existing corpora. The quality of the user simulation is therefore of crucial importance because it dramatically influences the results in terms of SDS performance analysis and the learnt strategy. Assessment of the quality of simulated dialogues and user simulation methods is an open issue and, although assessment metrics are required, there is no commonly adopted metric. In this paper, we give a survey of User Simulations Metrics in the literature, propose some extensions and discuss these metrics in terms of a list of desired features.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Software

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards a Formal Characterization of User Simulation Objectives in Conversational Information Access;Proceedings of the 2024 ACM SIGIR International Conference on Theory of Information Retrieval;2024-08-02

2. Exploring the Utility of Emotion Recognition Systems in Healthcare;Advances in Psychology, Mental Health, and Behavioral Studies;2024-04-12

3. Metaphorical User Simulators for Evaluating Task-oriented Dialogue Systems;ACM Transactions on Information Systems;2023-08-18

4. Development of a Trust-Aware User Simulator for Statistical Proactive Dialog Modeling in Human-AI Teams;Adjunct Proceedings of the 31st ACM Conference on User Modeling, Adaptation and Personalization;2023-06-16

5. A Survey on Recent Advances and Challenges in Reinforcement Learning Methods for Task-oriented Dialogue Policy Learning;Machine Intelligence Research;2023-01-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3