Autonomous Simultaneous Localization and Mapping driven by Monte Carlo uncertainty maps-based navigation

Author:

Auat Cheein Fernando A.,Pereira Fernando M. Lobo,di Sciascio Fernando,Carelli Ricardo

Abstract

AbstractThis paper addresses the problem of implementing a Simultaneous Localization and Mapping (SLAM) algorithm combined with a non-reactive controller (such as trajectory following or path following). A general study showing the advantages of using predictors to avoid mapping inconsistences in autonomous SLAM architectures is presented. In addition, this paper presents a priority-based uncertainty map construction method of the environment by a mobile robot when executing a SLAM algorithm. The SLAM algorithm is implemented with an extended Kalman filter (EKF) and extracts corners (convex and concave) and lines (associated with walls) from the surrounding environment. A navigation approach directs the robot motion to the regions of the environment with the higher uncertainty and the higher priority. The uncertainty of a region is specified by a probability characterization computed at the corresponding representative points. These points are obtained by a Monte Carlo experiment and their probability is estimated by the sum of Gaussians method, avoiding the time-consuming map-gridding procedure. The priority is determined by the frame in which the uncertainty region was detected (either local or global to the vehicle's pose). The mobile robot has a non-reactive trajectory following controller implemented on it to drive the vehicle to the uncertainty points. SLAM real-time experiments in real environment, navigation examples, uncertainty maps constructions along with algorithm strategies and architectures are also included in this work.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Software

Reference35 articles.

1. Diosi A. , Kleeman L. 2005. Laser scan matching in polar coordinates with application to SLAM. In Proceedings of the International Conference on Intelligent Robots and Systems, (IROS 2005), Alberta, Canada, 3317–3322.

2. Simultaneous localization and mapping: part I

3. Kouzoubov K. , Austin D. 2004. Hybrid Topological/Metric Approach to SLAM. In Proceedings of the IEEE International Conference on Robotics and Automation, 1(1), 872–877. New Orleans, LA, USA.

4. Chatila R. , Laumond J. P. 1985. Position referencing and consistent world modeling for mobile robots. In Proceedings of the IEEE International Conference on Robotics and Automation, St. Louis, USA, 138–145.

5. Estimating Uncertain Spatial Relationships in Robotics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3