A survey of interestingness measures for knowledge discovery

Author:

MCGARRY KEN

Abstract

It is a well-known fact that the data mining process can generate many hundreds and often thousands of patterns from data. The task for the data miner then becomes one of determining the most useful patterns from those that are trivial or are already well known to the organization. It is therefore necessary to filter out those patterns through the use of some measure of the patterns actual worth. This article presents a review of the available literature on the various measures devised for evaluating and ranking the discovered patterns produced by the data mining process. These so-called interestingness measures are generally divided into two categories: objective measures based on the statistical strengths or properties of the discovered patterns and subjective measures that are derived from the user's beliefs or expectations of their particular problem domain. We evaluate the strengths and weaknesses of the various interestingness measures with respect to the level of user integration within the discovery process.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Software

Cited by 181 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3