Agent-oriented software engineering

Author:

BERNON CAROLE,COSSENTINO MASSIMO,PAVÓN JUAN

Abstract

Considering the great number of agent-oriented methodologies that can be found in the literature, and the fact that each one defines its own concepts and system structure, one of the main challenges in agent-oriented software engineering (AOSE) research is how to make these methodologies interoperable. By defining concepts used in a specific domain in a non-ambiguous way, meta-modelling may represent a step towards such interoperability. Consequently the main objective of the AOSE TFG (Technical Forum Group) is to establish a strategy for identifying a common meta-model that could be widely adopted by the AOSE community. This paper sums up the approach used by this TFG which consists of (i) studying and comparing the meta-models related to some existing methodologies (ADELFE, Gaia, INGENIAS, PASSI, RICA and Tropos) in order to find commonalities and (ii) giving a clear and basic definition for the core concepts used in multi-agent systems for relating and positioning them in a unified MAS meta-model. The first proposal, set up by the working group, for this unified meta-model then concludes this paper.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Software

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Program Slicing of Agent-oriented Software;2023 2nd International Conference for Innovation in Technology (INOCON);2023-03-03

2. SmartDFRelevance: A Holonic Agent Based System for Engineering Industrial Projects in Concurrent Engineering Context;Advances in Intelligent Systems and Computing;2020-09-02

3. Structure for Knowledge Acquisition, Use, Learning and Collaboration Inter Agents over Internet Infrastructure Domains;Advances in Intelligent Systems and Computing;2019

4. Ontology reuse for multiagent system development through pattern classification;Software: Practice and Experience;2018-06-21

5. O-MaSE: An Extensible Methodology for Multi-agent Systems;Agent-Oriented Software Engineering;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3