A subglacial hydrologic drainage hypothesis for silt sorting and deposition during retreat in Pine Island Bay

Author:

Schroeder Dustin M.ORCID,MacKie Emma J.,Creyts Timothy T.ORCID,Anderson John B.

Abstract

AbstractLate Holocene sediment deposits in Pine Island Bay, West Antarctica, are hypothesized to be linked to intensive meltwater drainage during the retreat of the paleo-Pine Island Ice Stream after the Last Glacial Maximum. The uppermost sediment units show an abrupt transition from ice-proximal debris to a draped silt during the late Holocene, which is interpreted to coincide with rapid deglaciation. The small scale and fine sorting of the upper unit could be attributed to origins in subglacial meltwater; however the thickness and deposition rate for this unit imply punctuated- rather than continuous-deposition. This, combined with the deposit's location seaward of large, bedrock basins, has led to the interpretation of this unit as the result of subglacial lake outbursts in these basins. However, the fine-scale sorting of the silt unit is problematic for this energetic interpretation, which should mobilize and deposit a wider range of sediment sizes. To resolve this discrepancy, we present an alternative mechanism in which the silt was sorted by a distributed subglacial water system, stored in bedrock basins far inland of the grounding line, and subsequently eroded at higher flow speeds during retreat. We demonstrate that this mechanism is physically plausible given the subglacial conditions during the late Holocene. We hypothesize that similar silt units observed elsewhere in Antarctica downstream of bedrock basins could be the result of the same mechanism.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Insights into glacial processes from micromorphology of silt-sized sediment;The Cryosphere;2024-05-07

2. Glaciomarine sediments and processes;Reference Module in Earth Systems and Environmental Sciences;2024

3. The life and death of a subglacial lake in West Antarctica;Geology;2023-03-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3