Evaluation of disturbance effect on geese caused by an approaching unmanned aerial vehicle

Author:

BECH-HANSEN MADSORCID,KALLEHAUGE RUNE M.,LAURITZEN JANNIK M. S.,SØRENSEN MATHIAS H.,LAUBEK BJARKE,JENSEN LASSE F.,PERTOLDI CINO,BRUHN DAN

Abstract

SummaryUnmanned aerial vehicles (UAVs) are useful tools in ornithological studies. Importantly, though, UAV-caused disturbance has been noted to vary among species. This study evaluated guidelines for UAVs as a tool for researching geese. Twenty-four flocks of foraging geese were approached at an altitude of 50–100 m with a quadcopter UAV and disturbance effects were analysed across different horizontal distances between the UAV and the flocks. Geese were increasingly disturbed when approached by a UAV, with birds showing increased vigilance behaviour within approximately 300 m. Increasing UAV flight altitude as well as increasing take-off distance from the flocks both decreased the risk of bird flocks flushing. In conclusion, when monitoring geese using UAVs, flight altitudes of 100 m and take-off distances of ideally ∼500 m are recommended, to minimise initial disturbance and reducing the risk of birds flushing.

Publisher

Cambridge University Press (CUP)

Subject

Nature and Landscape Conservation,Animal Science and Zoology,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3