Characterising Dutch forests, wetlands and cultivated lands on the basis of phytolith assemblages

Author:

de Wolf Iris K.ORCID,McMichael Crystal N.H.ORCID,Philip Annemarie L.,Gosling William D.ORCID

Abstract

Abstract Palaeoecological reconstructions in the Netherlands are commonly based on pollen and macrofossil analysis, but can be limited if the preservation of organic material is poor. Phytoliths, biogenic silica, do not have this limitation and preserve in settings where other macro- and microfossils do not. Little is known about how phytolith assemblages preserved in soils and sediments reflect the parent vegetation in north-western European systems, so it is currently difficult to contextualise past environments. Here, we characterise phytolith assemblages for soil samples recovered from three major vegetation types in the Netherlands to provide reference data for future reconstructions of past vegetation change. We collected 42 soil surface samples from forests, wetlands and agricultural fields across the Netherlands and characterised the phytolith assemblages they contained. We identified the different phytolith morphotypes and quantified the percentages and concentrations (#phytoliths/cm3 soil) in each sample. We used non-metric multidimensional scaling to assess the variation in phytolith assemblage composition within, and between, the three vegetation types. The phytolith assemblages analysed from the forests, wetlands and agricultural fields were clearly distinguishable from each other. Agricultural fields were dominated by four phytolith morphotypes of grass silica short cells (GSSCs): rondel (tabular), cross type 1 (>15 µm), rondel (elongated) and disturbance or crop phytoliths. Forests settings had significantly higher amounts of different arboreal phytoliths (large and small spheroid rugose) compared with other vegetation types. Wetlands could be identified by significantly higher amounts of Cyperaceae phytoliths (papillate) and other GSSCs (saddle and bilobates with thick castula). Phytolith assemblages could distinguish different subtypes of vegetation within forest and wetland areas, while differences between agricultural systems could not be identified. Our study demonstrates that phytoliths preserved in soils or sediments can be used to separate major vegetation types across the Netherlands. Thus, these results support the hypothesis that phytoliths can be used to infer past environmental conditions in palaeoecological reconstructions. We suggest that future work should: (1) focus on characterising which phytolith types are produced by the commonest tree, wetland, shrub and herb species in the Netherlands and (2) characterise phytolith assemblages across a wider array of vegetation types in north-western European systems to increase the capability for quantitative reconstructions using phytolith assemblages.

Publisher

Cambridge University Press (CUP)

Subject

Geology

Reference59 articles.

1. Silica In Soils, Plants, and Animals

2. Potential of Opal Phytoliths for use in Paleoecological Reconstruction

3. Phytolith assemblages as a promising tool for reconstructing Mediterranean Holocene vegetation;Delhon;Quaternary Research,2003

4. CBS, PBL, RIVM & WUR, 2020a. Jaarlijkse hoeveelheid neerslag in Nederland, 1910-2019 (indicator 0508, versie 08, 24 April 2020). Available at www.clo.nl

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modern pollen- and phytolith-vegetation relationships at a wetland in northeastern South Africa;South African Journal of Botany;2023-10

2. Phytoliths;Reference Module in Earth Systems and Environmental Sciences;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3