Induced aseismic slip and the onset of seismicity in displaced faults

Author:

Jansen Jan-DirkORCID,Meulenbroek BernardORCID

Abstract

Abstract We address aseismic fault slip and the onset of seismicity resulting from depletion-induced or injection-induced stresses in reservoirs with pre-existing vertical or inclined faults. Building on classic results, we discuss semi-analytical modelling techniques for fault slip including dislocation theory, Cauchy-type singular integral equations and the use of Chebyshev polynomials for their solution and an eigenvalue-based stability analysis. We consider slip patch development during depletion for faults with zero, constant static and slip-weakening friction, and our results confirm earlier findings based on numerical simulation, in particular the aseismic growth of two slip patches that may subsequently merge and/or become unstable resulting in nucleation of seismic slip. New findings include improved approximate expressions for the induced seismic moment per unit strike length and a description of the effect of coupling between the slip patches which affects both forward simulation and eigenvalue computation for high values of the ratio of fault throw to reservoir height. Our implementation based on analytical inversion and semi-analytical integration with Chebyshev polynomials is more efficient and more robust than our numerical integration approach. It is not yet well suited for Monte Carlo simulation, which typically requires sub-second simulation times, but with some further development that option seems to be within reach. Moreover, our results offer a possibility for embedded fault modelling in large-scale numerical simulation tools.

Publisher

Cambridge University Press (CUP)

Subject

Geology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3