Design of simulation-based pilot training systems using machine learning agents

Author:

Källström J.ORCID,Granlund R.,Heintz F.

Abstract

AbstractThe high operational cost of aircraft, limited availability of air space, and strict safety regulations make training of fighter pilots increasingly challenging. By integrating Live, Virtual, and Constructive simulation resources, efficiency and effectiveness can be improved. In particular, if constructive simulations, which provide synthetic agents operating synthetic vehicles, were used to a higher degree, complex training scenarios could be realised at low cost, the need for support personnel could be reduced, and training availability could be improved. In this work, inspired by the recent improvements of techniques for artificial intelligence, we take a user perspective and investigate how intelligent, learning agents could help build future training systems. Through a domain analysis, a user study, and practical experiments, we identify important agent capabilities and characteristics, and then discuss design approaches and solution concepts for training systems to utilise learning agents for improved training value.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference51 articles.

1. [43] Bacon, P.L. , Harb, J. and Precup, D. The option-critic architecture, Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, 2017, pp 1726–1734.

2. Research on Air Combat Maneuver Decision-Making Method Based on Reinforcement Learning

3. [34] Kingma, D.P. and Ba, J. Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980, 2014.

4. A framework for describing interaction between human operators and autonomous, automated, and manual control systems;Lundberg;Cognition, Technology and Work,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3