Evaluation of a real-time simulation environment for helicopter air-to-air refuelling investigations

Author:

Schmidt S.O.ORCID,Jones M.ORCID,Löchert P.

Abstract

AbstractThe ability to perform air-to-air refuelling (AAR) can dramatically extend the utility of helicopters, through effectively providing unlimited range. For helicopters, AAR is typically performed utilising the probe-and-drogue aerial refuelling method. This is a complex manoeuver, where normally both the helicopter and tanker aircraft are operating at the limits of their flight envelopes. In addition, the wake flow from the tanker aircraft can cause a significant disturbance on the refuelling helicopter. This paper presents the initial evaluation of an AAR scenario constructed within DLR’s flight simulator, the Air Vehicle Simulator (AVES), based on current procedures and pilot interviews. A mission task was defined to assess the scenario in AVES and results are subsequently discussed. For pilots unfamiliar to formation flight or HAAR, the results show the difficulty of the flying task itself at the given cueing. Measures for improvement in future investigations are suggested.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference29 articles.

1. Advances in air to air refuelling;Thomas;Prog. Aerospace Sci.,2014

2. [25] Berger, T. , Cox, J.A. , Wood, J.A. , Ott LTC, C.R. , De Cecchis, P.M. Flight test assessment of the break turn and high-speed acceleration/deceleration mission task elements using UH-60M Black Hawk, VFS 75th Annual Forum, Philadelphia, Pennsylvania, May 13–16, 2019.

3. [20] Maibach, M.-J. , Jones, M. and Strbac, A. Development of a Simulation Environment for Maritime Rotorcraft Research Applications, Deutscher Luft- und Raumfahrtkongress (DLRK), 2020.

4. [26] Anon. Defence Standard 00-970, Design and Airworthiness Requirements for Service Aircraft, Part 7 – Rotorcraft, Issue 3, Ministry of Defence, Technical Report, Glasgow, UK, 2010.

5. [1] Anon. Air-to-Air Refueling, European Defence Agency, Fact sheet, 3 March, 2017.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3