Reduced-order model for efficient generation of a subsonic missile’s aerodynamic database

Author:

Sinha A.ORCID,Kumar R.,Umakant J.

Abstract

AbstractThis article reports on the development of a fast method for generating the aerodynamic database for subsonic flow over a missile. At present, this is typically achieved using RANS-based CFD, which is expensive for the complex missile geometries and the multiplicity of operating conditions to be evaluated. The presented reduced-order model (ROM) provides a reasonably accurate prediction of the aerodynamic coefficients of the missile (and, in fact, the full flow field around it) within half a minute. In particular, in the interpolative regime, prediction errors for all coefficients are typically less than 1% of their respective maximum values encountered in the database, with extrapolation incurring more error. The empirical approach ‘learns’ from the CFD solutions calculated for a few operating conditions, and then is able to make predictions for any other condition within a feasible set. The learning employs proper orthogonal decomposition (POD) to characterise the most important features of the flow. The prediction is posed as an optimisation problem that aims to find the flow solution as a linear combination of the above POD modes that minimises the residual of the governing equations. Innovations on the prevailing POD-ROM approach include novel implementation of boundary conditions, simplified computation of the aerodynamic coefficients, and a procedure for choosing modelling parameters based on extensive cross-validation. Challenges overcome in application to a problem of industrial relevance are discussed.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference26 articles.

1. [14] Sirovich, L. Turbulence and the dynamics of coherent structures, Parts I-III, Q. Appl. Math., 1987, XLV, (3), 561–590.

2. [12] Washabaugh, K.M. , Zahr, M.J. and Farhat, C. On the use of discrete nonlinear reduced-order models for the prediction of steady-state flows past parametrically deformed complex geometries, In 54th AIAA Aerospace Sciences Meeting, AIAA Paper 1814, 2019.

3. Reduced-order model for viscous aerodynamic flow past an airfoil;Alonso;AIAA J.,2010

4. A priori hyperreduction method: An adaptive approach;Ryckelynck;J. Comput. Phys.,2005

5. [11] Vendl, A. and Faßbender, H. Projection-based model order reduction for steady aerodynamics, In Computational Flight Testing, pp. 151–166. Springer, 2013.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3