Design and performance of directional rectification control system in an aircraft with a novel type of wheel-ski landing gear

Author:

Yin Q.ORCID,Sun H.,Li T.,Wei X.,Song J.ORCID

Abstract

AbstractFor a hypersonic-speed aircraft with a flat fuselage structure that has narrow space for a traditional wheel-type landing gear retraction, a novel type of wheel-ski landing gear is designed, which is different from traditional landing gears in force distribution and actuation methods. In order to capture the direction control performance of an aircraft with the wheel-ski landing gear, the aircraft ground taxiing nonlinear dynamic mathematical model is built based on a certain type of aircraft data. The experiment of the wheel-ski landing gear actuator and the differential brake control system is carried out to verify that the electric wheel-ski actuator model with the pressure sensor is in good agreement with the test results, indicating the model validity and the speediness of the differential brake response. Then a new fuzzy combined direction rectifying control law is designed based on the optimisation method and the fuzzy control theory. Comparing with the PD wheel-ski differential brake control, the direction rectifying efficiencies increase higher than 140% during the whole taxiing process. In addition, the combined control law can also decrease the overshoots of the yaw angle responses effectively. Finally, the stability and robustness of the designed combined direction control law are verified under various working conditions.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Reference38 articles.

1. Research on motion characteristics for UAV ground maneuvers

2. Fuzzy Robust Nonlinear Control Approach for Electro-hydraulic Flight Motion Simulator;Han;Chinese Journal of Aeronautics,2015

3. Effects of landing gear layout on the safe rollout envelope of equipped–skid aircraft

4. [4] Matranga, J.G. Analysis of X-15 Landing Approach and Flare Characteristics Determined from the First 30 Flights, National Aeronautics and Space Administration, Washington, 1961, pp 1–51.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3