Abstract
AbstractFor a common micro-satellite, orbiting in a circular sun-synchronous orbit (SSO) at an altitude between 500 and 600km, the satellite attitude during off-nadir imaging and staring-imaging operations can be up to ±45 degree on roll and pitch angles. During these off-nadir pointing for both multi-trip operation and staring imaging operations, the spacecraft body is commonly subject to high-rate motion. This posts challenges for a spacecraft attitude determination subsystem called Gyro Stellar Inertial Attitude Estimate (GS IAE), which employs gyros and star sensors to maintain the required attitude knowledge, since star trackers will severely degrade attitude estimation accuracies when the spacecraft is subject to high-rate motion. This paper analyses the star motion-induced errors for a typical star tracker, models the star motion-induced errors to assess the performance impact on the attitude estimation accuracy, and investigates the adaptive extended Kalman filter design in the GS IAE while evaluating its effectiveness.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献