Abstract
AbstractVariable camber flap technology can adjust the spanwise circulation distribution, thereby reducing the induced drag. Therefore, the concept of variable camber flap is introduced into the design of propeller aircraft wing, and the design for drag reduction of propeller aircraft is carried out. The numerical simulation of the propeller aircraft is carried out by using the actuator disc method with non-uniform distribution of radial and circumferential loads. Through the unsteady simulation of a single propeller, the aerodynamic load on a periodic propeller is extracted as a boundary condition to the steady simulation of the full aircraft. The load extracted by the actuator disc is compared with the unsteady simulation result, which verifies the reliability of the method. The design for drag reduction at cruise and climb design conditions are respectively carried out with the variable camber flap technology. The variable camber cruise configuration is evaluated at both the begin and end cruise conditions. The results show that, after the flaps deflecting at a small angle according to the circulation distribution, the camber distribution of the wing is adjusted to make the circulation distribution closer to the elliptical circulation distribution. At the design cruise condition, the drag coefficient is reduced by 1.4 counts, and the lift-drag ratio increase by 0.1. At both begin and end cruise conditions, the drag coefficient decreases by 1 count, and the lift-drag ratio increases by 0.07. At the design climb condition, the drag coefficient decreases by 1 count, and the lift-to-drag ratio increases by 0.09.
Publisher
Cambridge University Press (CUP)
Reference26 articles.
1. Aerodynamic design optimization of an aircraft wing for drag reduction using computational fluid dynamics approach;Shiva Kumar;Wind and Structures,2020
2. [7] Guo, L. , Tao, J. , Wang, C. , et al. Fuel efficiency optimization of high-aspect-ratio aircraft via variable camber technology considering aeroelasticity, Proc Inst Mech Eng G: J Aerosp Eng, 2020, p 0954410020959964.
3. [18] Moens, F. and Gardarein, P. Numerical simulation of the propeller/wing interactions for transport aircraft, 19th AIAA Applied Aerodynamics Conference, 2001, p 2404.
4. [17] Liu, Y. , Ouyang, S. and Zhao, X. Drag reduction effect of a variable camber wing of a transport aircraft based on trailing edge flap deflection of small angles, Asia-Pacific International Symposium on Aerospace Technology, Springer, Singapore, 2018, pp 1508–1514.
5. Morphing wing droop nose with large deformation: ground tests and lessons learned;Vasista;Aerospace,2019
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献