Post-weaning exposure to high-sucrose diet induces early non-alcoholic fatty liver disease onset and progression in male mice: role of dysfunctional white adipose tissue

Author:

França Lucas MartinsORCID,dos Santos Pâmela Costa,Barroso Wermerson Assunção,Gondim Roberta Sabrine Duarte,Coêlho Caio Fernando Ferreira,Flister Karla Frida Torres,Paes Antonio Marcus de AndradeORCID

Abstract

AbstractNon-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome, ranging from simple steatosis to non-alcoholic steatohepatitis (NASH) particularly among chronic consumers of added sugar-rich diets. However, the impact of early consumption of such diets on NAFLD onset and progression is unclear. Thus, this study sought to characterise metabolic factors involved in NAFLD progression in young mice fed with a high-sucrose diet (HSD). Male Swiss mice were fed HSD or regular chow (CTR) from weaning for up to 60 or 90 days. Obesity development, glucose homeostasis and serum biochemical parameters were determined at each time-point. At day 90, mice were euthanised and white adipose tissue (WAT) collected for lipolytic function assessment and liver for histology, gene expression and cytokines quantification. At day 60, HSD mice presented increased body mass, hypertriglyceridemia, peripheral insulin resistance (IR) and simple steatosis. Upon 90 days on diet, WAT from HSD mice displayed impaired insulin sensitivity, which coincided with increased fasting levels of glucose and free fatty acids (FFA), as well as NAFLD progression to NASH. Transcriptional levels of lipogenic genes, particularly stearoyl-CoA desaturase-1, were consistently increased, leading to hepatic leukocyte infiltration and pro-inflammatory cytokines spillover. Therefore, our dataset supports IR triggering in the WAT as a major factor for dysfunctional release of FFA towards portal circulation and consequent upregulation of lipogenic genes and hepatic inflammatory onset, which decisively concurred for NAFLD-to-NASH progression in young HSD-fed mice. Notwithstanding, this study forewarns against the early introduction of dietary sugars in infant diet, particularly following breastfeeding cessation.

Publisher

Cambridge University Press (CUP)

Subject

Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3