Abstract
AbstractMalathion is an insecticide that is used to control arboviruses and agricultural pests. Adolescents that are exposed to this insecticide are the most vulnerable as they are in the critical period of postnatal sexual development. This study aimed to evaluate whether malathion damage can affect sperm function and its respective mechanisms when adolescents are exposed during postnatal sexual development. Twenty-four male Wistar rats (PND 25) were divided into three experimental groups and treated daily for 40 d: control group (saline 0.9%), 10 mg/kg (M10 group), or 50 mg/kg (M50 group) of malathion. At PND 65, the rats were anesthetized and euthanized. Testicles were collected for the evaluation of gene expression. Sperm cells from the epididymis were used for evaluation of the oxidative profile or spermatic function. Data showed that a lower dose of malathion downregulated the gene expression of androgen receptors and testosterone converter enzyme 17-β-HSD in the testis. The acrosomal integrity of sperm cells was compromised in the M50 group, but not the M10 group. The mitochondrial activity was not impaired by exposure. Finally, although no alterations in malondialdehyde and glutathione levels were observed, malathion, at both doses, increased antioxidant enzyme catalase activity and, at a higher dose, superoxide dismutase activity. The present study showed that low doses of malathion considered to be inoffensive are capable of impairing sperm quality and function through the downregulation of testicular genic expression of AR enzyme 17-β-HSD and can damage the spermatic antioxidant profile during critical periods of development.
Publisher
Cambridge University Press (CUP)
Reference61 articles.
1. Exposure to low doses of malathion during juvenile and peripubertal periods impairs testicular and sperm parameters in rats: role of oxidative stress and testosterone;Erthal;Adv Exp Med Biol,2020
2. Malathion induced changes in catalase and superoxide dismutase in testicular tissues of goat in vitro;Sharma;Int J Pharm Biol Sci,2013
3. The Sperm Cell
4. Public Health Implications of Altered Puberty Timing
5. 4. D. O. C. O. N. T. D. WHO. Use of malathion for vector control: report of a WHO Meeting Geneva, 2016). (accessed January 3, 2018). http://apps.who.int/iris/bitstream/10665/207475/1/9789241510578_eng.pdf,
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献