Abstract
AbstractLet p be a prime and F a field of characteristic different from p. Suppose all p-primary roots of unity are contained in F. Let α ∈ pBr(F) which has a cyclic splitting field. We prove that γi(α) = 0 for all i ≥ 2, where γi : pBr(F) → K2i(F)/pK2i(F) are the divided power operations of degree p. We also show that if char F ≠ 2, √−1 ∈ F*. D ∈2 Br(F), indD = 8 and a ∈ F* such that ind DF(√a) = 4, then γ3(D) = {a,s}γ2(D) for some s ∈ F*. Consequently, we prove that if D, considered as a division algebra, has a subfield of degree 4 of certain type, then γ3(D) = 0. At the end of the paper we pose a few open questions.
Publisher
Cambridge University Press (CUP)
Subject
Geometry and Topology,Algebra and Number Theory
Reference15 articles.
1. Operations in Milnor K-theory
2. Central simple algebras and Galois cohomology.;Gille;Cambridge studies in advanced mathematics,2006
3. Comparison of Some Field Invariants
4. Amenable fields and Pfister extensions.;Elman;Queen's Papers Pure Appl. Math.,1976
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献