Author:
de Jeu Rob,Lewis James D.
Abstract
AbstractLet U/ℂ be a smooth quasi-projective variety of dimension d, CHr (U,m) Bloch's higher Chow group, andclr,m: CHr (U,m) ⊗ ℚ → homMHS (ℚ(0), H2r−m (U, ℚ(r)))the cycle class map. Beilinson once conjectured clr,m to be surjective [Be]; however, Jannsen was the first to find a counterexample in the case m = 1 [Ja1]. In this paper we study the image of clr,m in more detail (as well as at the “generic point” of U) in terms of kernels of Abel-Jacobi mappings. When r = m, we deduce from the Bloch-Kato conjecture (now a theorem) various results, in particular that the cokernel of clm,m at the generic point is the same for integral or rational coefficients.
Publisher
Cambridge University Press (CUP)
Subject
Geometry and Topology,Algebra and Number Theory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献