Uncertainty in the Cost-Effectiveness of Federal Air Quality Regulations

Author:

Krutilla Kerry,Good David H.,Graham John D.

Abstract

In this study, we conduct a cost-effectiveness analysis of nine air quality regulations recently issued by the U.S. Environmental Protection Agency (EPA). Taking emission reductions in the Regulatory Impact Analyses (RIAs) for these regulations as given, we independently assess uncertainty about the compliance costs of the regulations and the lives the regulations are estimated to save. The latter evaluation is based on a formal uncertainty analysis that integrates expert judgments about the effects of fine particle exposures on mortality risks. These expert judgments were given in an EPA-sponsored elicitation study conducted in 2006. The integrated judgments are used to generate probability distributions for several types of cost-effectiveness ratios, including the gross and net cost per life saved, net cost per life year saved, and net cost per quality-adjusted life year (QALY) gained. The results show that the cost-effectiveness ratios exhibit considerable uncertainty individually and also vary widely across regulations. Within a simulated 90% confidence interval for the gross cost per life saved, for example, there is both the possibility that benefits from lifesavings alone are sufficient to cover the rules’ costs and the possibility that no lives will be saved and cost-effectiveness ratios will be infinite. The wide ranges for the confidence intervals suggest the need for better information about the effects of fine particle exposures on mortality risks.

Publisher

Cambridge University Press (CUP)

Subject

Public Administration,Economics and Econometrics,Sociology and Political Science

Reference77 articles.

1. U.S. EPA (2012). Regulatory Impact Analysis for the Final Revisions to the National Ambient Air Quality Standards for Particulate Matter, December 2012. Retrieved fromhttp://www.epa.gov/ttnecas1/regdata/RIAs/finalria.pdf.

2. U.S. EPA (2009). Integrated Science Assessment for Particulate Matter (Final Report). U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-08/139F.

3. Uncertainty in mortality response to airborne fine particulate matter: Combining European air pollution experts

4. Hall, M. , DeFrances, C. , Williams, S. , Golosinskiy, A.  & Schwartzman, A. (2010). National Hospital Discharge Survey: 2007 Summary, in National Health Statistics Reports. October 29, 2010.

5. Efficient Pollution Regulation: Getting the Prices Right: Comment

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3