Abstract
Consider the Darboux problemwhere φ,ψ:I→Rd (I=[0,1]) are given absolutely continuous functions with φ(0)=ψ(0), and the mapping f : Q × Rd→Rd (Q = I × I) satisfies the following hypotheses:(A1) f(.,.,z) is measurable for every z ∈ Rd;(A2) f(x, y,.) is continuous for a.a. (almost all) (x, y) ∈ Q;(A3) there exists an integrable function α:Q →[0, + ∞) such that |f(x, y, z)|≦α(x, y) for every (x, y, z)∈ Q × Rd.
Publisher
Cambridge University Press (CUP)
Reference6 articles.
1. On decreasing sequences of compact absolute retracts
2. Le Correspondant Topologique De L'Unicite Dans La Theorie Des Equations Differentielles
3. Orlicz type category results for differential equations in Banach spaces;De Blasi;Comm. Math.,1983
4. On the set of solutions of the Darboux problem for some hyperbolic equations;Gorniewicz;Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys.,1980
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献