A boundary value problem on an infinite interval

Author:

Kartsatos Athanassios G.

Abstract

We are interested here in proving the existence of solutions to the (generalised) boundary value problemwhere A is a continuous n×n matrix on R+ = [0, ∞), F is a continuous n vector on R+ × S (S = a suitable subset of Rn), T is a bounded linear operator defined on (or on a subspace of) C[R+, Rn], the space of all bounded and continuous Rn-valued functions on R+, and r is a fixed vector in Rn. There is an abundance of papers dealing with the problem ((I), (II)) on finite intervals, either in its full generality (cf., for example, (1), (2), (3), (4), (6)), or for special cases of the operator T. The reader is especially referred to the work of Shreve (7), (8) for such problems on infinite intervals for scalar equations. A series representation of the solutions is given by Kravchenko and Yablonskii (5). Most of our methods are extensions of the corresponding ones on finite intervals with some variations concerning the application of fixed-point theorems. Examples of interesting operators T arewhere V(t), M, N are n×n matrices with V(t) integrable.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference8 articles.

1. On a functional problem for ordinary differential equations;Esukov;Uspehi Mat. Nauk,1958

2. Nonzero solutions to boundary value problems for nonlinear systems;Kartsatos;Pacific J. Math.

3. Linear problems for systems of nonlinear differential equations

4. Sur l'existence des solutions pour un problème aux limites général

5. Problèmes aux limites linéaires

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ON WEAKLY NONLINEAR BOUNDARY VALUE PROBLEMS ON INFINITE INTERVALS;DIFFER EQUAT APPL;2020

2. Nonlinear fourth order boundary value problem;Boundary Value Problems;2014-09-25

3. A SOBOLEV SPACE APPROACH TO BOUNDARY VALUE PROBLEMS ON THE HALF-LINE;Communications in Contemporary Mathematics;2005-02

4. Boundary value problems for second order nonlinear differential equations on infinite intervals;Journal of Mathematical Analysis and Applications;2004-02

5. Application to Differential Equations and Inclusions;Topological Fixed Point Principles for Boundary Value Problems;2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3