Abstract
If X is a Tychonoff topological space, and if βX is the Stone-Cech compactification of X, then βX\X will denote the complement of X in βX. If A is a subset of X, then cl [A: X] will denote the closure of A in X, and int [A: X] will denote the interior of A in X. In Isbell ((3), p. 119) a property of βX\X is called a property which X has at infinity, and it is the aim of this paper to give necessary and sufficient conditions for X to be finite at infinity. Since βX is T1 we can say that if X is finite at infinity, then βX\X is closed in βX. So we lose nothing by restricting our attention to locally compact, Tychonoff spaces, and for the remainder of the paper X will denote such a space.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Finite-point order compactifications;Mathematical Proceedings of the Cambridge Philosophical Society;1987-11