Abstract
In the general theory of relativity, as in many other branches of theoretical physics, the material and energetical content of spacetime is considered, in the first instance, as an extended field, which is specified by means of field quantities (energy-momentum-stress tensor, charge-current density, electromagnetic field strength). From this point of view corpuscles (material particles, photons) are constructs obtained by first considering the field quantities as nonvanishing only within certain world tubes, and then passing by limiting processes to the idealisation in which these world tubes are shrunk into world lines. More precisely, this passage to the corpuscular description may be thought of as accomplished by replacing the original field by successive members of a sequence of field distributions, satisfying the same field laws, which cluster more and more in the neighbourhood of the world lines, and for which in some significant sense the total measure approaches a finite limit. Each such world line, together with the limiting measures of those portions of the field quantities associated therewith, is then a corpuscle; the form of the world line determines the motion of the corpuscle, and the associated “corpuscular quantities” its physical attributes (mass or energy, momentum, charge).
Publisher
Cambridge University Press (CUP)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献