Abstract
For a valued field (K, v), let Kv denote the residue field of v and Gv its value group. One way of extending a valuation v defined on a field K to a simple transcendental extension K(x) is to choose any α in K and any μ in a totally ordered Abelian group containing Gv, and define a valuation w on K[x] by w(Σici(x – α)i) = mini (v(ci) + iμ). Clearly either Gv is a subgroup of finite index in Gw = Gv + ℤμ or Gw/Gv is not a torsion group. It can be easily shown that K(x)w is a simple transcendental extension of Kv in the former case. Conversely it is well known that for an algebraically closed field K with a valuation v, if w is an extension of v to K(x) such that either K(x)w is not algebraic over Kv or Gw/Gv is not a torsion group, then w is of the type described above. The present paper deals with the converse problem for any field K. It determines explicitly all such valuations w together with their residue fields and value groups.
Publisher
Cambridge University Press (CUP)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献