Abstract
The n! operations Ai of permutations upon n different ordered symbols correspond to n! matrices Ai of the nth order, which have in each row and in each column only one non-zero element, namely a unit. Such matrices Ai are called permutation matrices, since their effect in premultiplying an arbitrary column vector x = {x1x2….xn} is to impress the permutation Ai upon the elements xi. For example the six matrices of the third orderare permutation matrices. It is convenient to denote them bywhere the bracketed indices refer to the permutations of natural order. Clearly the relation Ai Aj = Ak entails the matrix relation AiAj = Ak; in other words, the n! matrices Ai, give a matrix representation of the symmetric group of order n!.
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Howe duality of the symmetric group and a multiset partition algebra;Communications in Algebra;2022-08-05
2. Generating functions for stable branching coefficients of , and;Journal of Physics A: Mathematical and General;1997-10-07
3. Alexander Craig Aitken, 1895-1967;Biographical Memoirs of Fellows of the Royal Society;1968-11