Abstract
It is well known that in many cases the solutions of a linear differential equation can be expressed as definite integrals, different solutions of the same equation being represented by integrals which have the same integrand, but different paths of integration. Thus, the various solutions of the hypergeometric differential equationcan be represented by integrals of the typethe path of integration being (for one particular solution) a closed circuit encircling the point t = 0 in the positive direction, then the point t = 1 in the positive direction, then the point t = 0 in the negative direction, and lastly the point t = 1 in the negative direction; or (for another particular solution) an arc in the t-plane joining the points t = 1 and t = ∞.
Publisher
Cambridge University Press (CUP)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献