Abstract
Consider a sufficiently smooth simple closed convex plane curve enclosing the origin, expanding linearly with time. The root mean square of the discrepancy (number of lattice points minus area) from time t = M to t = M + 1 is almost as small as the root mean square discrepancy from time t = 0 to t = M, so the discrepancy has no memory.
Publisher
Cambridge University Press (CUP)
Reference13 articles.
1. Sur une fonction transcendante et ses applications à la sommation de quelques séries
2. Sur un probleme du calcul des fonctions asymptotiques;Sierpinski;Prace Mat.-Fiz.,1906
3. An Ω-estimate for the lattice rest of a convex planar domain
4. 8. Huxley M. N. , Area, Lattice Points, and Exponential Sums (London Math. Soc.), to appear.
5. Über Gitterpunkte in der Ebene
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Mixed $L^{p}(L^{2})$ norms of the lattice point discrepancy;Transactions of the American Mathematical Society;2019-03-07
2. Lattice points in a circle for generic unimodular shears;International Journal of Number Theory;2017-02-07
3. Average number of lattice points in a disk;Communications on Pure and Applied Analysis;2015-12
4. More is more;ACM Transactions on Sensor Networks;2012-07
5. Number Theory, Fourier Analysis and Geometric Discrepancy;LOND MATH T;2009