Author:
Jia Rong-Qing,Shen Zuowei
Abstract
Multiresolution is investigated on the basis of shift-invariant spaces. Given a finitely generated shift-invariant subspace S of L2(ℝd), let Sk be the 2k-dilate of S (k∈ℤ). A necessary and sufficient condition is given for the sequence {Sk}k∈ℤ to fom a multiresolution of L2(ℝd). A general construction of orthogonal wavelets is given, but such wavelets might not have certain desirable properties. With the aid of the general theory of vector fields on spheres, it is demonstrated that the intrinsic properties of the scaling function must be used in constructing orthogonal wavelets with a certain decay rate. When the scaling function is skew-symmetric about some point, orthogonal wavelets and prewavelets are constructed in such a way that they possess certain attractive properties. Several examples are provided to illustrate the general theory.
Publisher
Cambridge University Press (CUP)
Cited by
110 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献