Abstract
AbstractWe introduce an invariant, called the contact number, associated with each Euclidean submanifold. We show that this invariant is, surprisingly, closely related to the notions of isotropic submanifolds and holomorphic curves. We are able to establish a simple criterion for a submanifold to have any given contact number. Moreover, we completely classify codimension-$2$ submanifolds with contact number ${\geq}3$. We also study surfaces in $\mathbb{E}^6$ with contact number ${\geq}4$. As an immediate consequence, we obtain the first explicit examples of non-spherical pseudo-umbilical surfaces in Euclidean spaces.AMS 2000 Mathematics subject classification: Primary 53C40; 53A10. Secondary 53B25; 53C42
Publisher
Cambridge University Press (CUP)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献