Author:
Beyl F. Rudolf,Latiolais M. Paul,Waller Nancy
Abstract
We consider spines of spherical space forms; i.e., spines of closed oriented 3-manifolds whose universal cover is the 3-sphere. We give sufficient conditions for such spines to be homotopy or simple homotopy equivalent to 2-complexes with the same fundamental group G and minimal Euler characteristic 1. If the group ring ℤG satisfies stably-free cancellation, then any such 2-complex is homotopy equivalent to a spine of a 3-manifold. If K1(ℤG) is represented by units and K is homotopy equivalent to a spine X, then K and X are simple homotopy equivalent. We exhibit several infinite families of non-abelian groups G for which these conditions apply.
Publisher
Cambridge University Press (CUP)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献