Continuous dependence results for a class of evolution inclusions

Author:

Papageorgiou Nikolaos S.

Abstract

In this paper we examine the dependence of the solutions of an evolution inclusion on a parameter λ We prove two dependence theorems. In the first the parameter appears only in the orientor field and we show that the solution set depends continuously on it for both the Vietoris and Hausdorff topologies. In the second the parameter appears also in the monotone operator. Using the notion of G-convergence of operators we prove that the solution set is upper semicontinuous with respect to the parameter. Both results make use of a general existence theorem which we also prove in this paper. Finally, we present two examples. One from control theory and the other from partial differential inclusions.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference22 articles.

1. Convergence of parabolic operators;Spagnolo;Boll. Un. Mat. Ital.,1977

2. Sul limite delle soluzioni di problemi di Cauchy relativi all' equazioni del calore;Spagnolo;Ann. Scuola Norm. Sup. Pisa,1967

3. G-convergence of parabolic operators

4. Survey of Measurable Selection Theorems

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Invariance and stability of global attractors for multi-valued impulsive dynamical systems;Journal of Mathematical Analysis and Applications;2018-02

2. Sensitivity of the Solution Set to Second Order Evolution Inclusions;IFIP Advances in Information and Communication Technology;2014

3. On the "bang-bang" principle for nonlinear evolution inclusions;NoDEA : Nonlinear Differential Equations and Applications;1999-02-01

4. Remarks on differential inclusions without existence or continuous dependence;Acta Mathematica Hungarica;1998

5. Control problems for systems described by nonlinear second order evolution inclusions;Nonlinear Analysis: Theory, Methods & Applications;1997-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3