Author:
Le Stum-Boivin Éloïse,Magnan Gabriel,Garneau Michelle,Fenton Nicole J.,Grondin Pierre,Bergeron Yves
Abstract
AbstractPaludification is the most common process of peatland formation in boreal regions. In this study, we investigated the autogenic (e.g., topography) and allogenic (fire and climate) factors triggering paludification in different geomorphological contexts (glaciolacustrine silty-clayey and fluvioglacial deposits) within the Québec black spruce (Picea mariana)–moss boreal forest. Paleoecological analyses were conducted along three toposequences varying from a forest on mineral soil to forested and semi-open peatlands. Plant macrofossil and charcoal analyses were performed on basal peat sections (≤50 cm) and thick forest humus (<40 cm) to reconstruct local vegetation dynamics and fire history involved in the paludification process. Results show that primary paludification started in small topographic depressions after land emergence ca. 8000 cal yr BP within rich fens. Lateral peatland expansion and secondary paludification into adjacent forests occurred between ca. 5100 and 2300 cal yr BP and resulted from low-severity fires during a climatic deterioration. Fires that reduced or eliminated entirely the organic layer promoted the establishment ofSphagnumin microdepressions. Paludification resulted in the decline of some coniferous species such asAbies balsameaandPinus banksiana. The paleoecological approach along toposequences allowed us to understand the spatiotemporal dynamics of paludification and its impacts on the vegetation dynamics over the Holocene.
Publisher
Cambridge University Press (CUP)
Subject
General Earth and Planetary Sciences,Earth-Surface Processes,Arts and Humanities (miscellaneous)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献