In-site pollen record from the Dadiwan archaeological site and the human-environment relationship during Marine Oxygen Isotope Stage 3

Author:

Peng Wei,Huang Xiaozhong,Zhang Dongju,Storozum Michael J.,Chen Fahu

Abstract

AbstractClimatic change that affects biological productivity is often argued to be a primary force influencing human activities during the glacial period. To test this assumption, we combine in-site pollen, paleoclimatic, and archaeological data from the Dadiwan site and nearby areas on the western Loess Plateau (WLP) that date to Marine Oxygen Isotope Stage (MIS) 3. Our comparison of multiple datasets suggests that regional human activities increased when the vegetation around the Dadiwan area shifted from forest steppe in the early MIS 3 (59–46.7 ka) to steppe in the middle to late MIS 3 (46.7–29.5 ka). Our results indicate that regional human activities increased again during the late MIS 3 when the amount of precipitation was higher, as indicated by the lower Artemisia proportion. We suggest that increased precipitation on the WLP enhanced the above-ground biomass production and may be responsible for an increase in human activity and population in this region.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Earth-Surface Processes,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3