The seed laser system of the FERMI free-electron laser: design, performance and near future upgrades

Author:

Cinquegrana P.,Demidovich A.,Kurdi G.,Nikolov I.,Sigalotti P.,Susnjar P.,Danailov M. B.ORCID

Abstract

Abstract An important trend in extreme ultraviolet and soft X-ray free-electron laser (FEL) development in recent years has been the use of seeding by an external laser, aimed to improve the coherence and stability of the generated pulses. The high-gain harmonic generation seeding technique was first implemented at FERMI and provided FEL radiation with high coherence as well as intensity and wavelength stability comparable to table-top ultrafast lasers. At FERMI, the seed laser has another very important function: it is the source of external laser pulses used in pump–probe experiments allowing one to achieve a record-low timing jitter. This paper describes the design, performance and operational modes of the FERMI seed laser in both single- and double-cascade schemes. In addition, the planned upgrade of the system to meet the challenges of the upgrade to echo-enabled harmonic generation mode is presented.

Publisher

Cambridge University Press (CUP)

Subject

Nuclear Energy and Engineering,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Two-electron interference in two-photon attosecond double ionization of neon;Physical Review A;2024-07-02

2. A new framework for soft x-ray transient gratings;Journal of Physics B: Atomic, Molecular and Optical Physics;2024-06-14

3. Generation of high-energy, sub-20 fs deep-UV pulses in a twin-crystal third harmonic generation scheme;Optics Letters;2024-04-09

4. Compact and robust common-path scheme for fourth harmonic generation of deep UV ultrashort laser pulses;CLEO 2024;2024

5. Seed Laser Upgrade for EEHG Operation of FERMI FEL-1;2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC);2023-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3