Integro-differential equations for the self-organisation of liver zones by competitive exclusion of cell-types

Author:

Bass L.,Bracken A. J.,Holmåker K.,Jefferies B. R. F.

Abstract

AbstractA model is developed for the seif-organisation of zones of enzymatic activity along a liver capillary (hepatic sinusoid) lined with cells of two types, which contain different enzymes and compete for sites on the wall of the sinusoid. An effectively non-local interaction between the cells arises from local consumption of oxygen from blood flowing throug1 the sinusoid, which gives rise to gradients of oxygen concentration in turn influencing rates of division and of death of the two cell-types. The process is modelled by a pair of coupled non-linear integro-differential equations for the cell-densities as functions of time and position along the sinusoid. Existence of a unique, bounded, non-negative solution of the equations is proved, for prescribed initial values. The equations admit infinitely many stationary solutions, but it is shown that all except one are unstable, for any given set of the model parameters. The remaining solution is shown to be asymptotically stable against a large class of perturbations. For certain ranges of the model parameters, the asymptotically stable stationaxy solution has a zonal structure, with cells of one type located entirely upstream of cells of the other type, and with jump discontinuities in the cell densities at a certain distance along the sinusoid. Such sinusoidal zones can account for zones of enzymatic activity observed in the intact liver. Exceptional cases are found for singular choices of model parameters, such that stationary cell-densities cannot be asymptotically stable individually, but together form an asymptotically stable set. Certain mathematical questions are left open, notably the behaviour of large deviations from stationary solutions, and the global stability of such solutions. Possible generalisations of the model are described.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modelling the Formation of Liver Zones within the Scope of Fractional Order Derivative;BioMed Research International;2014

2. Analytical Solutions for the Mathematical Model Describing the Formation of Liver Zones via Adomian’s Method;Computational and Mathematical Methods in Medicine;2013

3. Global Asymptotic Stability for a Stationary Solution of a System of Integro-Differential Equations Describing the Formation of Liver Zones;SIAM Journal on Mathematical Analysis;1993-01

4. Simple mathematical models for urban growth;Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences;1992-07-08

5. A Tauberian approach to asymptotic stability of competition equations;Nonlinear Analysis: Theory, Methods & Applications;1990-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3