Abstract
Iterative methods for solving a square system of nonlinear equations g(x) = 0 often require that the sum of squares residual γ (x) ≡ ½∥g(x)∥2 be reduced at each step. Since the gradient of γ depends on the Jacobian ∇g, this stabilization strategy is not easily implemented if only approximations Bk to ∇g are available. Therefore most quasi-Newton algorithms either include special updating steps or reset Bk to a divided difference estimate of ∇g whenever no satisfactory progress is made. Here the need for such back-up devices is avoided by a derivative-free line search in the range of g. Assuming that the Bk are generated from an rbitrary B0 by fixed scale updates, we establish superlinear convergence from within any compact level set of γ on which g has a differentiable inverse function g−1.
Publisher
Cambridge University Press (CUP)
Cited by
83 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献