Abstract
AbstractIn this paper we develop the Laplace-transform method to solve initial-value problems for the velocity potential describing the generation of infinitesimal capillary-gravity waves in a motionless liquid with an inertial surface composed of uniformly distributed floating particles. The two principal problems considered are the forced motions due to a submerged wave source and an immersed vertical plane wave-maker, which begin to operate in a time-dependent manner at a given instant. The transformed potentials are calculated using techniques similar to those which are effective in traditional time-harmonic problems with a free surface. The steady-state development in the time-harmonic example taken demonstrates the existence of outgoing progressive waves under any inertial surface, in contrast to the case of no surface tension when such waves cannot propagate under an inertial surface that is too heavy. The solution is also noted of the Cauchy-Poisson problem for the free motion flowing an intial elevation of the inertial surface, which is obtained by the same method.
Publisher
Cambridge University Press (CUP)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献