Author:
Coolen-Schrijner Pauline,Hart Andrew,Pollett Phil
Abstract
AbstractWe shall study continuous-time Markov chains on the nonnegative integers which are both irreducible and transient, and which exhibit discernible stationarity before drift to infinity “sets in”. We will show how this ‘quasi’ stationary behaviour can be modelled using a limiting conditional distribution: specifically, the limiting state probabilities conditional on not having left 0 for the last time. By way of adualchain, obtained by killing the original process on last exit from 0, we invoke the theory of quasistationarity forabsorbingMarkov chains. We prove that the conditioned state probabilities of the original chain are equal to the state probabilities of its dual conditioned on non-absorption, thus allowing to establish the simultaneous existence and then equivalence, of their limiting conditional distributions. Although a limiting conditional distribution for the dual chain is always quasistationary distribution in the usual sense, a similar statement is not possible for the original chain.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献