The deformation of rubber cylinders and tubes by rotation

Author:

Chadwick P.,Creasy C. F. M.,Hart V. G.

Abstract

AbstractA detailed analytical and numerical study is made of the deformation of highly elastic circular cylinders and tubes produced by steady rotation about the axis of symmetry. Explicit results are obtained through the use of Ogden's strain–energy function for incompressible isotropic elastic materials which, as well as being analytically convenient, is capable of reproducing accurately the observed isothermal behaviour of vulcanized rubber over a wide range of deformations. The three problems of steady rotation considered here concern (i) a tube shrink-fitted to a rigid spindle, (ii)an unconstrained tube, and (iii) a solid cylinder. In each case a set of restictions on the material constans appearing in the strain–energy function is stated which ensures that a tubular of cylindrical shape-preserving deformation exists for all angular spees and that, for problems (i) and (iii), there is no other solution. In connection with problems (ii) and (iii) values of the material constans are also given which correspond to the bifuraction or non-existence of soultions. Enegry consideration are used to determine the local stability of the various solutions obtained.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of stress-strain state of an incompressible elliptic cylinder with a hole;Journal of Mechanics of Materials and Structures;2022-12-31

2. Modelling and FEM simulation of a rotating hyperelastic spherical balloon actuator;Australian Journal of Mechanical Engineering;2022-04-18

3. Modeling and analysis of an electro-magneto-elastic rotating cylindrical tube actuator;Journal of Intelligent Material Systems and Structures;2022-01-07

4. Vibrational characteristics of rotating soft cylinders;Science China Physics, Mechanics & Astronomy;2021-03-23

5. Large deformation of hyperelastic thick-walled vessels under combined extension-torsion-pressure: analytical solution and FEM;Mechanics Based Design of Structures and Machines;2020-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3