Fruit yield and quality responses of apple cvars Gala and Fuji to partial rootzone drying under Mediterranean conditions

Author:

FRANCAVIGLIA D.,FARINA V.,AVELLONE G.,LO BIANCO R.

Abstract

SUMMARYIncreasing irrigation efficiency is a major goal for fruit production in dry Mediterranean environments. The present study was conducted in three consecutive years (2007–09) under typical Mediterranean conditions and tested the effect of partial rootzone drying (PRD) on yield and fruit quality of two apple cultivars: Gala, with fruit maturing in summer and Fuji, with fruit maturing in autumn. Three irrigation treatments were imposed: conventional irrigation (CI), PRD (0·50 of CI water on one side of the rootzone, which was alternated periodically) and continuous deficit irrigation (DI, 0·50 of CI water on both sides of the rootzone). During the 2008 and 2009 irrigation seasons, DI reduced tree water status, and to some extent soil moisture, compared with CI and PRD. In all the years and both cultivars, DI reduced crop load by 11 and 5% over CI and PRD, respectively. In cvar Fuji, DI reduced production per tree by 9% and yield efficiency by 16% compared with CI. In all years for cvar Gala and in 2 of the 3 years for cvar Fuji, PRD and DI increased fruit soluble solid content by 5–6%, whereas PRD improved peel colour only in cvar Fuji and in 2 of the 3 years. In cvar Gala, DI fruit showed 27% more sorbitol and 55% more sucrose than PRD fruit. In both cultivars, PRD determined greater marketable yield and profit than DI. Irrigation water productivity (IWP) was increased by both PRD and DI, and in Fuji, PRD induced 18% greater IWP than DI. The different responses of the two cultivars to irrigation treatments can be attributed to differences in canopy size, crop load and mostly to the different timing of fruit growth. In particular, undergoing fast fruit growth during the irrigation period seems to induce permanent yield reductions in DI (but not PRD) trees of cvar Fuji, whereas water deficit during late fruit growth and lower crop load may have cancelled the negative effect of DI in the smaller trees of cvar Gala.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3