Effects of crop rotation and fallow residue management on maize growth, yield and soil carbon in a savannah-forest transition zone of Ghana

Author:

ADIKU S. G. K.,JONES J. W.,KUMAGA F. K.,TONYIGAH A.

Abstract

SUMMARYThe purpose of the present study was to investigate the effects of seven maize (Zea mays)–fallow rotation and fallow residue management treatments on growth, maize yield and soil carbon within a savannah-forest farming zone of Ghana. Over a 4-year period, maize rotated with bare fallow (control) produced an average maize biomass and yield of 4·0 and 1·0 t/ha/yr, respectively. Maize rotated with elephant grass (Pennisetum purpureum) with the fallow grass residue burning produced an average maize biomass and yield of 8·0 and 2·0 t/ha/yr, respectively. The removal of the fallow grass biomass (9·0 t/ha/yr) by burning resulted in a low total residue (maize stover+fallow residue) returned to the soil (7·0 t/ha/yr). The total residue returned to the soil was 14·0 t/ha/yr. Despite the larger total residue returned to the soil by the incorporation treatment, the performance of the maize was not significantly different from that of the fallow residue burning treatment. Maize rotated with cowpea (Vigna unguiculata), mucuna (Mucuna pruriens) or pigeon pea (Cajanus cajan) produced similar maize biomass of 8·0 t/ha/yr and yields of 2·0 t/ha/yr, but with higher variability for the maize–cowpea rotation. Biomass produced by fallow cowpea, mucuna or pigeon pea were 4·0, 5·0 and 8·0 t/ha/yr, respectively, and total residues added to the soil were 13·0, 13·0 and 15·0 t/ha/yr, respectively. Maize–grass rotation with fertilizer application to the maize resulted in biomass and yield production of 11·0 and 3·0 t/ha/yr, respectively, and fallow grass production of 12·0 t/ha/yr. The total residue returned to the soil was 18·0 t/ha/yr. Soil organic carbon (SOC) declined under all treatments over time, with the control losing about 55% of the initial SOC by the end of the trial. The decline in SOC was 19% for the fertilized maize–grass rotation, but all other treatments lost between 33 and 44% SOC. Overall, the fertilized maize–grass and maize–pigeon pea rotations were identified as those that sustained relatively high maize yields, returned large residue amounts to the soil and minimized soil carbon loss.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3