Adaptive models for online estimation of individual milk yield response to concentrate intake and milking interval length of dairy cows

Author:

ANDRÉ G.,ENGEL B.,BERENTSEN P. B. M.,VAN DUINKERKEN G.,OUDE LANSINK A. G. J. M.

Abstract

SUMMARYAutomated feeding and milking of dairy cows enables the application of individual cow settings for concentrate supply and milking frequency. Currently, general settings are used, based on knowledge about energy and nutrient requirements in relation to milk production at the group level. Individual settings, based on the actual individual response in milk yield, have the potential for a marked increase in economic profits. In the present study, adaptive dynamic models for online estimation of milk yield response to concentrate intake and length of milking interval are evaluated. The parameters in these models may change over time and are updated through a Bayesian approach for online analysis of time series. The main use of dynamic models lies in their ability to determine economically optimal settings for concentrate intake and milking interval length for individual cows at any day in lactation. Three adaptive dynamic models are evaluated, a model with linear terms for concentrate intake and length of milking interval, a model that also comprises quadratic terms, and an enhanced model (EM) in order to obtain more stable parameter estimates. The linear model is useful only for forecasting milk production and the estimated parameters of the quadratic model were found to be unstable. The parsimony of the EM leads to far more stable parameter estimates. It is shown that the EM is suitable for control and monitoring, and therefore promises to be a valuable tool for application within precision livestock farming.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3