Nitrate leaching and N2-fixation in grasslands of different composition, age and management

Author:

ERIKSEN J.,VINTHER F. P.,SØEGAARD K.

Abstract

Grass-legume associations may offer a way of improving the N efficiency of dairy farming, but may also have an adverse impact on the environment by increasing leaching losses. Nitrate leaching from four cropping sequences with different grassland frequency and management (long-term grazed, long-term cut, cereals followed by 1 and 2-year grazed leys) were investigated on a loamy sand in central Jutland for both unfertilized grass-clover (perennial ryegrass (Lolium perenne L.)/white clover (Trifolium repens L.)) and fertilized perennial ryegrass (300 kg N/ha) swards during 1997–2002. Furthermore, 1 year (2001) of N2 fixation in 1-, 2- and 8-year-old grass-clover pastures was determined. Nitrate leaching from grazed unfertilized grass-clover was always considerably lower than from grazed fertilized ryegrass. The effect of grassland age on nitrate leaching was insignificant in grass-clover but clear in grazed ryegrass, where levels increased dramatically with sward age. In production years 6–8, leaching from grass-clover was only 9–13% of the comparable losses from ryegrass. Under the cutting regime grass-clover showed a significant reduction in both yield and N-removal with increasing sward age, whereas for ryegrass these figures did not show any decreasing trend. N2 fixation was lower in 8-year-old swards compared with fully established 2-year-old swards as a consequence of lower dry matter production, lower clover content and a lower proportion of clover-N derived from the atmosphere. The results from the present study indicate that the higher leaching losses observed in fertilized grass compared with unfertilized grass-clover systems were caused by (1) a reduction in N2-fixation in grass-clover over time and (2) a reduction in dry matter production in grass-clover over time, lowering the grazing intensity and the recycling of grassland N via animal excreta.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3