Phenology and growth response to irrigation and sowing date of Kabuli chickpea (Cicer arietinum L.) in a cool-temperate subhumid climate

Author:

ANWAR M. RAJIN,McKENZIE B. A.,HILL G. D.

Abstract

The photothermal response of three Kabuli chickpea (Cicer arietinum L.) cultivars, at different growth stages, to eight irrigation treatments in 1998/99 and four irrigation treatments in 1999/2000 was studied on a Wakanui silt loam soil in Canterbury, New Zealand (43°38S, 172°30E). The rate of development from emergence to flowering (e-f) and sowing to harvest maturity were strongly and positively associated (R2=0·87, P<0·001) with mean temperature during those periods. All phenological stages considered (sowing to emergence, e-f, flowering to podding, podding to physiological maturity and physiological maturity to harvest maturity) depended upon accumulated thermal time (Tt) above a base temperature (Tb) of 1 °C.An accurate prediction of time of flowering was made based on an accumulated mean Tt requirement of 629 °Cdays from e-f (R2=0·91, P<0·001). Fully irrigated crops had higher maximum dry matter accumulation (maxDM; 1093 g/m2), duration of exponential growth (DUR; 99 days), weighted mean absolute growth rate (WMAGR; 12·2 g/m2 per day) and maximum crop growth rate (MGR; 17·1 g/m2 per day). In 1998/99 the positive response of maxDM and MGR depended on a significant (P<0·01) interaction between irrigation and sowing date. The maxDM during the season was highly correlated with DUR and MGR (R2=0·79 and 0·65). It is concluded that to maximize chickpea biological yield in the dry season of the cool-temperate subhumid climate of Canterbury, irrigation should extend across all phenological stages.

Publisher

Cambridge University Press (CUP)

Subject

Genetics,Agronomy and Crop Science,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3